Search results for "damped harmonic oscillator"
showing 2 items of 2 documents
A no-go result for the quantum damped harmonic oscillator
2019
Abstract In this letter we show that it is not possible to set up a canonical quantization for the damped harmonic oscillator using the Bateman Lagrangian. In particular, we prove that no square integrable vacuum exists for the natural ladder operators of the system, and that the only vacua can be found as distributions. This implies that the procedure proposed by some authors is only formally correct, and requires a much deeper analysis to be made rigorous.
Modified Landau levels, damped harmonic oscillator and two-dimensional pseudo-bosons
2010
In a series of recent papers one of us has analyzed in some details a class of elementary excitations called {\em pseudo-bosons}. They arise from a special deformation of the canonical commutation relation $[a,a^\dagger]=\1$, which is replaced by $[a,b]=\1$, with $b$ not necessarily equal to $a^\dagger$. Here, after a two-dimensional extension of the general framework, we apply the theory to a generalized version of the two-dimensional Hamiltonian describing Landau levels. Moreover, for this system, we discuss coherent states and we deduce a resolution of the identity. We also consider a different class of examples arising from a classical system, i.e. a damped harmonic oscillator.